

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4732

Probability & Statistics 1

Thursday 9 JUNE 2005

Morning

1 hour 30 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF1)

TIME 1 ho

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 (i) Calculate the value of Spearman's rank correlation coefficient between the two sets of rankings, A and B, shown in Table 1. [4]

A	1	2	3	4	5
В	4	1	3	2	5

Table 1

(ii) The value of Spearman's rank correlation coefficient between the set of rankings B and a third set of rankings, C, is known to be -1. Copy and complete Table 2 showing the set of rankings C.

B	4	1	3	2	5
C					

Table 2

- 2 The probability that a certain sample of radioactive material emits an alpha-particle in one unit of time is 0.14. In one unit of time no more than one alpha-particle can be emitted. The number of units of time up to and including the first in which an alpha-particle is emitted is denoted by *T*.
 - (i) Find the value of

(a)
$$P(T=5)$$
, [3]

(b)
$$P(T < 8)$$
. [3]

- (ii) State the value of E(T). [2]
- 3 In a supermarket the proportion of shoppers who buy washing powder is denoted by p. 16 shoppers are selected at random.
 - (i) Given that p = 0.35, use tables to find the probability that the number of shoppers who buy washing powder is

(ii) Given instead that p = 0.38, find the probability that the number of shoppers who buy washing powder is exactly 6. [3]

4 The table shows the latitude, x (in degrees correct to 3 significant figures), and the average rainfall y (in cm correct to 3 significant figures) of five European cities.

City	х	у
Berlin	52.5	58.2
Bucharest	44.4	58.7
Moscow	55.8	53.3
St Petersburg	60.0	47.8
Warsaw	52.3	56.6

$$[n = 5, \Sigma x = 265.0, \Sigma y = 274.6, \Sigma x^2 = 14176.54, \Sigma y^2 = 15162.22, \Sigma xy = 14464.10.]$$

(i) Calculate the product moment correlation coefficient.

[3]

- (ii) The values of y in the table were in fact obtained from measurements in inches and converted into centimetres by multiplying by 2.54. State what effect it would have had on the value of the product moment correlation coefficient if it had been calculated using inches instead of centimetres. [1]
- (iii) It is required to estimate the annual rainfall at Bergen, where x = 60.4. Calculate the equation of an appropriate line of regression, giving your answer in simplified form, and use it to find the required estimate. [5]

5 The examination marks obtained by 1200 candidates are illustrated on the cumulative frequency graph, where the data points are joined by a smooth curve.

Use the curve to estimate

(i) the interquartile range of the marks, [3]

(ii) x, if 40% of the candidates scored more than x marks, [3]

(iii) the number of candidates who scored more than 68 marks. [2]

Five of the candidates are selected at random, with replacement.

(iv) Estimate the probability that all five scored more than 68 marks. [3]

It is subsequently discovered that the candidates' marks in the range 35 to 55 were evenly distributed—that is, roughly equal numbers of candidates scored 35, 36, 37, ..., 55.

(v) What does this information suggest about the estimate of the interquartile range found in part (i)?

Two bags contain coloured discs. At first, bag P contains 2 red discs and 2 green discs, and bag Q contains 3 red discs and 1 green disc. A disc is chosen at random from bag P, its colour is noted and it is placed in bag Q. A disc is then chosen at random from bag Q, its colour is noted and it is placed in bag P. A disc is then chosen at random from bag P.

The tree diagram shows the different combinations of three coloured discs chosen.

(i) Write down the values of a, b, c, d, e and f.

[4]

The total number of red discs chosen, out of 3, is denoted by R. The table shows the probability distribution of R.

r	0	1	2	3
P(R=r)	$P(R=r) \qquad \frac{1}{10}$		$\frac{9}{20}$	<u>1</u> 5

(ii) Show how to obtain the value
$$P(R = 2) = \frac{9}{20}$$
. [3]

(iii) Find the value of
$$k$$
. [2]

(iv) Calculate the mean and variance of
$$R$$
. [5]

7 A committee of 7 people is to be chosen at random from 18 volunteers.

The 18 volunteers consist of 5 people from Gloucester, 6 from Hereford and 7 from Worcester. The committee is to be chosen randomly. Find the probability that the committee will

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

rounding			
1 (i) Σd^2	M1		Subtr & squ 5 pairs & add
= 14	A1		
$1-\frac{6 \times their 14}{}$	1		
$1 - \frac{6 \times 1000 \text{ T}}{5 \times 1000 \text{ T}}$	M1		dep 1stM1
5 × (25 – 1)	Al	4	,
= 0.3		7	$S_{xy} = 48 - \frac{15x15}{5} \} $ { = 3 } $S_{xx} = 55 - \frac{15^{2}}{5} \} $ { = 10 } $S_{yy} = 55 - \frac{15^{2}}{5} \} $ { = 10 }
			$S_{xx} = 55 - \underline{15^2}$ $\{ = 10 \}$
			5 } M1 { } A1
			$S_{yy} = 55 - 15^2$ } { = 10 }
	-		5 } { }
			their S_{xy} M1dep = 0.3 A1
			$\sqrt{(S_{xx}S_{yy})}$
(ii) Reverse rankings attempted	M1		3 correct
2 5 3 4 1	A1	2	T & I to make $\Sigma d^2 = 40$: 2 mks or 0 mks
	6		
2 (i) (a) Geo(0.14) stated in (a) or (b)	B1		or $0.86^n \times 0.14$ or $0.14^n \times 0.86$ in (a) or $\ge M1$ in (b)
2 (1) (a) Geo(0.14) stated iii (a) of (b)	ы		or Geo(0.86) stated in (a) or (b)
(0.00)4 0.14	1,41		or Geo(0.86) stated in (a) or (b)
$(0.86)^4 \times 0.14$	M1	•	3. 1. 0.055 DIVILIO
= 0.0766 (3 sfs)	A1	3	No wking: 0.077: BIM1A0
(b) $1 - 0.86^7$	M2		$1 - 0.86^8$: M1
or $0.14 + 0.86 \times 0.14 \dots + 0.86^6 \times 0.14$			$+8^{th}$ term $(r = 7 \text{ or } 0)$ or 1 missing term: M1
= 0.652 (3 sfs)	A1	3	
	1		
(ii) 1/0.14	M1		
$= \frac{50}{7}$ or 7.14 (3 sfs)	Al	2	
	8		Mark 1-1
3 (i) (a) B(16, 0.35) stated	B1		Or implied by use of tables or
3 (1) (a) B(10, 0.55) stated	"		$0.35^a \times 0.65^b$ (a+b = 16) in (a) or (b)
1 – 0.8406	M1		Allow 1 – 0.9329 or 0.0671
1 - 0.6400	1411		Or complete method using formula,
-0.150 (2.5)	1.	2	P(r = 8-16 or 9-16) or 1-P(r = 0-7 or 0-8)
= 0.159 (3 sfs)	A1	3	A.U. 0.0551 0.0000
(b) 0.9771 – 0.1339	MI		Allow 0.9771 – 0.2892
	1	_	Or complete method using formula $(r = 4-9)$
= 0.843 (3 sfs)	A1	2	
(ii) ${}^{16}C_6(0.38)^6(0.62)^{10}$	M2		Absent or incorr coeff: M1
			or ${}^{16}C_6(0.38)^{10}(0.62)^6$: M1
= 0.202 (3 sfs)	Al	3	
	8		
4 (i) Correct subst in \geq two S formulae	MI		Any correct version
			•
265×2746			or
$14464.1 - \frac{265 \times 274.6}{5}$			$14464.1 - 5 \times 53 \times 54.92$
	MI		
$\left(\frac{1}{1417654} 265^2 \right) \left(\frac{274.6^2}{1516323} 274.6^2 \right)$	1411		$\sqrt{(14176.54-5\times53^2)(15162.22-5\times54.92^2)}$
$\sqrt{14176.54 - \frac{265^2}{5}} \sqrt{15162.22 - \frac{274.6^2}{5}}$			• ·
	A 1		or fully correct method with $(x - \overline{x})^2$ etc
2000/2	A1	2	
=-0.868 (3 sfs)		3	
(ii) No difference oe	B1	1	Or slightly diff or more acc because of rounding
			errors when mult by 2.54 oe
			Not just "more accurate"
(***\C1	Dillad		or implied, eg by S_{xy}/S_{xx} or $y = ax + b$
(iii)Choose y on x stated	Blind		V = UV + UV

265×274.6			If state x on y, but wking is y on x: B1 $-89.7 144641 - 5 \times 53 \times 5492$
$\frac{14464.1 - \frac{265 \times 274.6}{5}}{14176.54 - \frac{265^{2}}{5}} \text{or} -0.682$	M1		or their $\frac{-89.7}{131.54}$ seen or $\frac{14464.1-5\times53\times54.92}{14176.54-5\times53^2}$ or correct subst into a correct formula \underline{S}_{xy} \underline{S}_{xx}
$y - \frac{274.6}{5} = (\text{their} - 0.682)(x - \frac{265}{5})$ $y = 91(.1) - 0.68(2) x$	M1ind A1	5	or $a = {}^{274.6}/_5$ - (their – 0.682) \times ${}^{265}/_5$ Simplif to 3 terms. Coeffs to ≥ 2 sfs
49.9 (3sfs) or 50	A1		cao Use of x on y: equiv M mks as above
	9		
5 (i) Read at 300 or 300.25 and 900 or 900.75 44.5 to 45.5 and 69 to 69.9	M1 A1		or 44-46 and 68-70 incl.
IQR 23.5 to 25.4	Al		dep A1 Must look back, see method. No wking, ans in range: M1A1A1 Seen or implied
(ii) 0.6 or 60%	MI		
CF 720 63 to 64	M1 A1	3	Seen or implied
03 10 04	Al	3	55.5 to 56: SC B1
(iii) 1200 – 860	MI		Allow 1200 – (850 to 890)
= 340	Al	2	310 to 350
(iv) 340/1200	M1		their (iii)/1200
0.2835	Mldep		[their (iii)/1200] ⁵ exactly
= 0.00183	A1	3	Allow 0.00114 to $0.00212 \ge 2$ sfs
			$^{340}\text{C}_5/^{1200}\text{C}_5$ M1
(v) Incorrect reason or ambiguity: B0B0. Otherwise:			eg IQR = 55–35 = 20 or IQR = value >27
Too low, or should be 26 or 27 or 2 or 3 higher	B2	2	or new info' implies straight line: B1 or originally, majority in range 35 – 55 are at top of
			this range: B1
	13		
6 (i) $a = \frac{4}{5}$, $b = \frac{1}{5}$ $c = \frac{1}{4}$, $d = \frac{3}{4}$ $e = \frac{3}{4}$, $f = \frac{1}{4}$	B1 B1B1 B1		Or: B1 { ie: a, b : B1
$\frac{(ii)^{1/2}x^{4/5}x^{1/2} + \frac{1}{2}x^{1/5}x^{1/4} + \frac{1}{2}x^{3/5}x^{3/4}}{(ii)^{1/2}x^{4/5}x^{1/2} + \frac{1}{2}x^{1/5}x^{1/4} + \frac{1}{2}x^{3/5}x^{3/4}}$	M2	4	M1: one correct product (M2 needs +)
$= \frac{9}{20}$ (AG) with no errors seen	A1	3	ft their values for M mks only
(iii) $1/10 + 9/20 + k + 1/5 = 1$ oe or $\frac{1}{2}x^{1}/5x^{3}/4 + \frac{1}{2}x^{3}/5x^{1}/4 + \frac{1}{2}x^{2}/5x^{1}/2$	MI		ft their values for M mk only
$k = \frac{1}{4}$ oe	Al	2	The state of the s
$(iv) \Sigma xp(x)$	MI		Allow omit 1st term only. Not ISW, eg ÷ 4
$= 1\frac{3}{4} \text{ oe}$	AI		cao
$\Sigma x^2 p(x) = 3 \frac{17}{20}]$ $\Sigma x^2 p(x) - (\text{their } \mu)^2$	M1 M1ind A1	5	Allow omit 1st term only. Not ISW, eg \div 4 Subtract (their μ) ² , if result +ve Follow their k for M mks only
63/80 or 0.788 (3 sfs)			$\Sigma(x - \mu)^2 p(x)$: Single consistent pair: M1 Rest correct : M1
	14		

7 (i) ${}^{18}C_7$ or ${}^{18!}/_{(11! \times 7!)}$	M1		
= 31824	Al	2	cao
(ii) ${}^{5}C_{2} \times {}^{6}C_{2} \times {}^{7}C_{3}$ or 5250 ÷ 31824 = 875/5304 or 5250/31824 oe or 0.165 (3 sfs)	M2 M1	4	M1: 1 correct "C _r or mult any three "C _r s Divide by their (i). Indep If cancelled, must be clear have ÷ 31824
(iii) 5 from W & 2 from (G + H) ${}^{7}C_{5} \times {}^{11}C_{2}$ or 1155 ÷ 31824	M1 M1 M1		Seen or implied, eg by combs or list Divide by their (i). Indep
= 385/10608 or 1155/31824 oe or 0.0363 (3 sfs)	Al	4	
			$ \frac{7 \times 6 \times 5 \times 4 \times 3 \times 11 \times 10 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 5! \times 2!} $ Correct 7 fractions mult: M1 $ \times 7! : M1 $ $ \div (5! \times 2!): M1 $ both dep any 7 fracts mult
(iv) (2, 2, 3) or (2, 3, 2) or (3, 2, 2)	MI		Any one. Seen or implied eg by combs
	M2		M1: one correct product. NOT ${}^5C_2 \times {}^6C_2 \times {}^7C_2$
(÷ 31824) = 175/442 or 12600/31824 oe or 0.396 (3 sfs)	Al	4	(No mk for ÷ 31824)
01 0.370 (3 515)		•	Equiv method; ((ii) + etc) can imply M mks
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			Complement method: Triple with total 7, incl at least one 0 or 1 or (0, 7) or (1, 6) seen or implied: M1
			One correct prod seen, eg ${}^5C_0x^6C_2x^7C_5$ M1
			Full correct method, incl "1 " M1
		1	
	14		